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Hydrodynamic forces on a submerged cylinder 
advancing in water waves of finite depth 

By G. X. W U  
Department of Mechanical Engineering, University College London, Torrington Place, 

London WClE 7JE. UK 

(Received 29 May 1990) 

The hydrodynamic problem of a submerged horizontal cylinder advancing in regular 
water waves of finite depth at  constant forward speed is analysed by the linearized 
velocity potential theory. The Green function is first derived. Far-field equations for 
calculating damping coefficients and exciting forces are obtained. The numerical 
method used combines a finite-element approximation of the potential in a region 
surrounding the cylinder with a boundary-integral-equation representation of the 
outer region. Numerical results for the hydrodynamic forces on submerged circular 
cylinders and elliptical cylinders are provided. 

1. Introduction 
The work on the linearized potential problem of a submerged horizontal cylinder 

advancing in regular water waves at  constant forward speed has been hitherto 
limited to infinite water depth. Grue & Palm (1985) considered a special case of the 
circular cylinder using the source distribution method. For this particular problem 
the source distribution over the cylinder surface could be written as the Fourier 
series. The boundary-integral equation for the source distribution is then transferred 
to an infinite set of linear equation for the coefficients in the series. A more general 
case of an elliptical cylinder was solved by Mo & Palm (1987) using a numerical 
method for the high-order source distribution over the cylinder. The solution of an 
arbitrary submerged non-lifting cylinder was obtained by Wu & Eatock Taylor 
(1987) using the coupled finite-element method. The method combines a fmite- 
element representation of the potential in the near field with an integral 
representation in the far field. It has a particular advantage in that it avoids the 
calculation of the second-order derivatives of the steady potential. 

In this work we shall solve the problem of a submerged cylinder in finite water 
depth. The water depth is known to have a marked effect on various linearized free- 
surface flow problems. We shall investigate its effect on the present problem by first 
deriving the Green function. A summary of the coupled finite-element method then 
follows. Numerical results are provided for hydrodynamic coefficients and exciting 
forces. Comparison is made between results obtained from the integration of the 
pressure over the cylinder surface and far-field equations derived in this paper and 
excellent agreement is found. 

2. Governing equations 
We define the right-handed coordinate system 0-xyz so that x points in the 

direction of forward speed U and z points upwards. The origin of the coordinates is 
located on the undisturbed free surface. The whole system is moving with the body 
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at  the same speed. For a time-periodic incoming wave at a frequency w,, the total 
potential can be written as 

@ = - ux+ U$+Re [ ( q o  $ o + ~ I  $1 + 93 $ 3 + 7 5  4 5 + %  $7) ei"tl, (1) 

where $ is the steady potential due to unit forward speed; (j = 1,3,5) are the 
radiation potentials associated with translations in the x- and z-directions and 
rotation about y respectively; 7 j  (j = 1,3,5) are corresponding motion amplitudes; 
q50 and c j 7  are the potentials of the incident and diffracted waves respectively; and 
7, = q7 is the incoming wave amplitude. The encounter frequency w is obtained 
from 

w = w,fkoU,  ( 2 4  

(2 b)  k, tanh (k, d )  = w t / g ,  

where d is the water depth, the + sign corresponds to the incident wave coming from 
the right-hand side of the cylinder and the - sign corresponds to the wave from the 
left. 

Based on the assumptions of the linearized theory, we have the governing 
equations for the steady potential 

in the whole fluid domain ; 

9 an = nz (4) 

on the cylinder surface So, where n is the inward normal from the cylinder surface and 
nx is the component of n in the x-direction ; 

P A  + 622 = 0 
on the free surface S,  or z = 0, where p = g/V; and 

on the bottom of the fluid. The far-field behaviour of $ can be specified as 

a6 
ax - = 0  as X + + C Q ,  

where w(x, z )  corresponds to a wave oscillating with x. 

equations (Newman 1978) : 

in the whole Auid domain ; 

The components of the radiation and diffraction potentials satisfy the following 

v2$i = 0 (8) 

(9) $ j z  + ( T 2 / V )  $ j x z  - 2iT4j.2 - ~ $ j  = 0 

on the free surface, where r = wU/g and v = w 2 / g ;  
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on the bottom of the fluid: 

!& = iwnj+ Umj (j = 1,3,5), 
an 

on the cylinder surface, with 

and 

The radiation condition for q5, ( j  = 1,3,5,7) states that  a wave travelling in the 
direction of the forward speed and with its group velocity larger than the forward 
speed is far in front of the body, and otherwise the waves propagate behind. 

3. Green function 
The Green function is defined as the potential of a source undergoing the same 

motions as the cylinder. A brief discussion has been given by Becker (1956). We may 
write it as 

(13) 

(14a) 

G(x ,  z ,  E,  Y) = ln (rid) +In (r214 +H@, z ,  E,  Y), 
where r = [(x - ~ ) 2  + (2 - ~)9 ,  

r2 = [ (~-~)2++(~+<+2d)21t .  (14b) 

The first term is due to a source located a t  (&c)  and the second is its mirror image 
about the bottom of the fluid. The sum of these two terms satisfies the boundary 
condition on the horizontal bottom z = -d .  H ( x ,  z ,  E , [ )  is regular in the whole fluid 
domain. Since 

we may write H in the following form: 

H = 1; (coshm(z+d) [A(m) e-im(s-n +B(m) e'"("-~]+CC(m)} dm, (16) 

which satisfies the Laplace equation and bottom boundary condition. By imposing 
the free-surface condition in (9) on G ,  we obtain 

- [mu + ( ~ m ) '  + 27mu + u2] 
mu[m tanh (md) - (~m)~/u-27m- u] 

- [mu + ( ~ m ) ~  - 2 ~ m u  + u2] 

ecmd cosh m(6+ d )  
cosh (md) 

e-md cosh m(g+ d )  

A(m) = , ( 1 7 ~ )  

(17b) B(m) = 

C(m) = -2e-md/m. (17c) 

mu[mtanh(md)-(~m)2/u+27m-u]  cosh (md) ' 
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It can be seen that A ( m )  or B(m) are singular when mutanh(md) = ( T ~ + u ) ,  

or mu tanh (md) = (7m- u ) ~ .  The latter always has two solutions, k ,  and k,, with 
k,  > k,; but care is needed in the first equation. We may write it as 

(18) u = Um + w = [mg tanh ( d ) ] i ,  

where cr is the frequency in the fixed coordinate system. We plot this equation in 
figure 1. It is apparent that for a sufficiently large U there is no solution. When U 
decreases to U,  there will be one solution a t  which the derivatives of both sides of (18) 
are identical, or 

where C, = da/dm is the group velocity in the fixed system. When U further 
decreases there will be two solutions, k,  and k,, with k,  > k,. 

Invoking the radiation condition, we can write the Green function as 

G = In ( r / d )  + In ( r 2 / d )  

+ 1: { cosh m([ + d )  cosh m(z + d )  
cosh md 

u [ l  + tanh (md)] 
(777~)~  + 27um -mu tanh (md) + u2 

ePmd coshm([+d) 
cosh (md) 

x cosh m(z + d )  ePim@-D dm 

u[ 1 + tanh (md)] 
(7m), - 27um -mu tanh (md) + u2 

e-md coshm(<+d) 
cosh (md) 

+PvJ; 

x cosh m(z + d )  eim@-D dm 

u[ 1 + tanh ( k ,  d ) ]  
272k, + 27u - u tanh ( k ,  d )  - k ,  ud sech2 ( k ,  d )  

e-kld cosh k,( g + d )  
cosh (Ic, d )  

+ xi 

x cosh k,(z + d )  e-ikl(z-c) 

u [ l +  tanh ( k , d )  
272kz + 27u- u tanh (kz  d )  - k ,  ud sech2 ( k , d )  

eckZd cosh k , ( [ + d )  
cosh ( k , d )  

-xi 

x cosh k2(z  + d )  e-ik2(s-t) 

u[ 1 + tanh ( k ,  d ) ]  e-k3d cosh k,(<+ d )  
-xi 

2 ~ ~ k , - 2 ~ ~ - u t a n h ( k , d ) - k , u d s e c h ~  ( k , d )  cosh ( k , d )  

x cosh k,(z + d )  eik3(s-5) 

u[ 1 + tanh ( k ,  d ) ]  
2 ~ ~ k ,  - 27u - u tanh ( k ,  d )  - k,  ud sech2 ( k ,  d )  

e-lcadcosh k 4 ( g + d )  
cosh ( k ,  d )  

x cosh k , ( z + d )  eik4(z-0, ( 2 0 )  

where PV indicates the principal-value integration. In  this equation, the k ,  and k,  
waves travel in the direction of the forward speed ; but only the k,  wave has its group 
velocity larger than the forward speed and therefore is located far in front of the 
body. When there is no solution from (18) the terms involving k ,  and k,  should be 
deleted from ( 2 0 ) .  

- 7ci 
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FIGURE 1. Graphical solution of equation (18). 

4. The coupled finite-element method 
As shown in figure 2, the coupled finite-element method divides the fluid domain 

into a region R, surrounding the cylinder and a region R, tending to infinity. We 
impose the Laplace equation in a uniform sense in region R,, or 

16, V2$+ dz dz = 0, (21) 

where $ is an appropriately chosen weight function. Using Green’s identity, we 
obtain 

where S, is the outer boundary of R, (or the inner boundary of R,) and is assumed 
fully submerged in the present problem of a submerged body. In (22), a$/an on the 
right-hand side is known from the body surface condition; and a$/an on the left- 
hand side can be determined from the following boundary integral equation over s, : 

obtained from the second Green’s identity in the outer domain R,, where a is the 
subtended exterior angle at point P and the direction of n is from R, to R,. By 
discretization of this equation using the finite-element shape function, we can express 
a$/an as a function of q5 on S,. By substitution of the result into (22) a governing 
equation for potentials on the nodes of the finite elements can be obtained. The 
detailed numerical process for obtaining the results below follows that in the work on 
infinite water depth (Wu & Eatock Taylor 1987). 
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FIGURE 2. Definition of geometry and fluid regions. 

5. Hydrodynamic coefficients 
The steady potential 6 and the related wave resistance on a submerged cylinder 

have been obtained by Eatock Taylor & Wu (1986) using the coupled finite-element 
method. The solution is employed here in the body-surface boundary condition in 
(1 1 a )  on the radiation potentials. Thus we only give a discussion on the unsteady 
potential. However, as the solution of the steady potential of a floating cylinder is 
not unique (Ursell 1980), the discussion is limited to a submerged cylinder. 

After the velocity potential is found, the added masses ,uLu and damping coefficients 
Atj can be obtained from (Newman 1978) 

where p is the density of the fluid and 

w =  UV(6-z) .  (25) 

Equation (24) may also be written in the following form (Wu & Eatock Taylor 
1988 b )  : 

where the symbol * denotes the complex conjugate. Thus 
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( x 10-1) 
va 
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va 
FIGURE 3. The added masses of a circular cylinder in water of different depths (h  = 2a, Fn = 0.4) ; 
(a) surge, ( b )  heave. -A-, d = 10a, Y, a = 0.3906 ; - + -, d = 4.5a, v, a = 0.3906 ; -*-, d = 3.5a, 
v, a = 0.3906. 
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FIGURE 4. The damping coefficients of a circular cylinder in water of different depths 
( h  = 2a,Fn = 0.4); (a)  surge, (6) heave. Symbols as figure 3. 
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whcre S ,  is the surface a t  infinity and may be taken as two vertical lines a t  x + f 00. 

Invoking the free-surface boundary condition on q5, we obtain 

+a, 

T u - G  = P[ f (q5 : ,h -q5 , rq5 : )+2 i7q5fa} -a , -P~~~  (q5:nq5,-q5,nma. 

Since q5, + A ,  cosh k,(z + d) e-ikzx/cosh k, d as x-t + 00 , 

where i in At, corresponds to that in k,, and j indicates j t h  mode of the motions, we 
can obtain the contribution from the k, wave to the above equation as 

1 7 2  1 

V [ 4kz 

From the governing equation for k,, this equation becomes 

I, = -2ikzA,*aA,,+2i~A,*,A,,-2ikZ $d++-sinh (2k,d) sech2 (k,d)A,*,A,,. 

T2 v 
v k, 

1, = iA,*, A,, [- k,--- k,d sech2 (k, d)] . 
Using 

A,, cosh k, ( z  + d )  e-iklx A,, cosh k3( z + d) eikzz A,, cosh k4( z + d) eilc4x 
q5I + cosh k, d + cosh k, d + cosh k, d 

as x-t---oo 

we can obtain the similar contributions from k,, k, and k, and the final result can be 
written as 

7,,-7$ = p i  -A:,A,, ~k,---k,dseche (k,d)] { K1 
T2 v 
v k, 

v k, 

+A,*,A,, [ - k, - - - k, d sech2 (k, d) ]  

+A,*, A ,  [ - k, - - - k, d sech2 (k, d ) ]  
7 2  v 

7 2  v 
+A: A,, [ - k, - - - k, d sech2 (k, d)]} . (27 1 

v k, 

Unlike the case of zero forward speed, no relation such as T ~ ,  = T,* (e.g. Mei 1982) 
is found in general. Thus (27) does not provide a means for calculating the individual 
hydrodynamic coefficients. However, the special case i = j reduces (27) to 

h 37 -- - -q 2w -IA,,12 [:' -kl---k,dsech~(k,d)] k", .r %.* 

k, d sech2 (k, d ) ]  

k, d sech2 (k, d)] 

k, d sech2 (k, d)]} . 



654 G . X .  Wu 

This enables us to  calculate the hydrodynamic damping from an alternative equation 
to (24). As d + 00, (28) can be found to be virtually identical to  that in infinite water 
depth derived by Grue & Palm (1985) from energy conservation (noting they have 
used the wave amplitude in the equation). For supercritical flow the terms involving 
k, and k,  should be deleted from (28). 

Another special case of (27) is when forward speed is very large. As U+co the 
solutions k, and k, do not exist and k, = k , + w / U .  This gives 

7ij - 7; = 0, (29) 

which has been proved by Wu & Eatock Taylor (1988~)  for the general case of the 
linearized potential theory. 

Figures 3 and 4 give the hydrodynamic coefficients for a circular cylinder 
submerged a t  h = 2a in fluid of different depths (a is the radius of the cylinder and 
h is the distance from the centre of the cylinder to  the free surface), using a mesh of 
12 elements which provides sufficient accuracy. The results are plotted against va at 
the Froude number F n  = U/(ga)i = 0.4. v, is defined as the critical point a t  which 
both (18) and (19) are satisfied. Since the added mass and damping coefficient 
associated with the rotation of a circular cylinder about its centre are zero, they are 
omitted from the figures. Equation (28) is used to check the damping coefficients A ,  
obtained from (24) and excellent agreement is found. Since i t  is also observed that 
the equation 731 = -713 for a symmetrical cylinder (Timman & Newman 1962; 
Newman 1965; Wu & Eatock Taylor 1990) is satisfied a t  this Froude number, results 
for 713 are omitted. 

From the calculation, we found that the effect of the water depth becomes 
significant when d < 10a for the case in figures 3 and 4. However, in the calculated 
region 3 . 5 ~  < d c 10a, the water depth does not affect the first four figures of the 
critical point. This is mainly because F n  = 0.4 corresponds to a low speed. The results 
change sharply near v,, but they do not suggest discontinuity (Mo & Palm 1987). 

6. The exciting forces and moments 

as 
We now consider the diffraction problem. The incident potential may be written 

where + and - signs correspond to a wave from the right and left respectively. After 
the diffraction g57 is found, the exciting force and moment can be obtained from 
(Newman 1978) 

4 = -PTo ls0 [id$o + $7) w'v($o $711 nj u. (31a) 

Similar to (24), equation (31a) may be written as 

Since the diffraction potential satisfies the same free-surface and radiation conditions 
as the radiation potential, an equation similar to (27) containing the amplitudes of 
the diffraction potential can be easily obtained. However, care is needed for the 
incident potential since it does not satisfy the radiation condition. We first consider 
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FIGURE 5. The amplitude of the surge exciting force on a circular cylinder in water of different 
depths (h  = 2a, Fn = 0.4); (a )  wave from the right, -A-, d = lOa, vOca = 2678; -+-, 
d = 4.5a, vOca = 0.2568; -*-, d = 3.5a, vOca = 0.2498. ( b )  Wave from the left, -A-, d = 10a, 

9.1068. 
~ , , ~ = 0 . 3 9 0 6 ,  9.1069; -+-, d = 4 5 ~ , v , , ~ = 0 . 3 9 0 6 ,  9.1609; -*-,d= 3 . 5 ~ , ~ , , ~ = 0 . 3 9 0 6 ,  
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the case of a wave from the right. It can easily be found that k,  is identical to k,. This 
immediately gives 

7 2  u l$ = piv, { -A$A,,  [ 7 k ,  -F-  k, d sech2 (k, d ) ]  

7 2  u 

v k ,  
+A?jA2, [ - k ,  --- k ,  d sech2 ( k ,  d ) ]  

72 v 
- A  3*3A3, [; k, - - - k ,  d sech2 (k3  d ) ]  

k3 

-Azj (A,, -%) [f k4-v- k, d sech2 (k, d ) ] }  
Wo v k,  

When there is no solution from (18), the terms involving k,  and k ,  in the above 
equation should be deleted. 

When the wave is from the left, we have k, = k, if the group velocity of the 
incoming wave C,, > U ,  and ko = k,  if C,, < U. I n  the first case, we have 

72 v 
v k ,  

I$ = piq, { -A:A,, [- k ,  --- k ,  d sech2 (k, d ) ]  

+A,*, (A,, -”) [‘ k, - 1- k ,  d sech2 ( k ,  d ) ]  
wo v k ,  

1 72 v 
- k, - - -  k ,  d sech’ (k, d )  -A$& [ 

k3 

7 2  v 
-Azj A,, [v k,  - - - k, d sech2 ( k ,  d ) ] }  , 

k, 

while in the second case the term - ig/w, should be included in A17. Complexity arises 
when U > w , / k , ,  since the encounter frequency becomes negative. As a negative 
encounter frequency has no apparent physical meaning, the time factor in (1) should 
be taken as e-iwt, while 

The sign of the first term on the right-hand side of (1 1 a) should be correspondingly 
changed and the Green function employed in (23)  should be replaced by G*. The 
physical interpretation of U > w,/k,  is that the cylinder overtakes the incident wave. 
I n  the coordinate system moving with the cylinder one actually sees that the wave 
is from the right. It gives k,  = k,  and the term -ig/w should be included in A,,. 
Finally, analogous to  the case of a wave from the right, when there is no solution 
from (18), the terms involving k ,  and k, should be deleted from (32b) .  

Figures 5 ( a )  and 5 ( b )  give the surge exciting forces on the circular cylinder 
considered in figures 3 and 4, and corresponding to the incoming wave from the right 
and left respectively, while figures 6 (a) and 6 ( b )  give the heave forces. The results are 
now plotted against u, a(u, = wi/g) and are non-dimensionalized by p g d (  v, 7, e-”oh). 
The problem here is quite different from that without forward speed. The figures 
show that even for a symmetric cylinder, incoming waves from the right and left give 
different results. This is mainly because they lead to different encounter frequencies 
as shown by (2a). When the wave is from the left, there will be two critical points, 

w = k, U-w,. (33)  
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of different 
as figure 5. 

one of which corresponds to w > 0 and the other to w < 0. For both incoming wave 
directions, the effect of water on the exciting forces is mainly in the low-frequency 
or short-wavelength range. 

Figures 7 and 8 give the results for an elliptical cylinder with an upward attack 
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FIGURE 7 .  The influence of forward speed on the exciting force and moment on an elliptic cylinder 
(h = 2a, a = 2b, d = 3.5a, voa = 0.5, Fn, = 0.1554), wave from the right. -A-, VJ; -+-, IF31; 

-*-2 VJ. 
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FIQURE 8. The influence of forward speed on the exciting force and moment on an elliptic cylinder 
(h = 2a, a = 2b, d = 3.5a, v,,a = 0.5, Fn, = 0.4261, 0.7771) wave from the left. Symbols as figure 7. 
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angle of 10' and submerged a t  h = 2a with a = 2b ( a  is the major axis and b minor 
axis). Following the increase of the Froudc number Fn = U/(gh)i  we have k,  = k,  a t  
low speed. As the forward speed increases, it reaches the critical point a t  Fn = 0.4261 
corresponding to U = C,,,. As the cylinder advances a t  the same speed as the wave 
group velocity at this point, the exciting forces approach zero. Unlike the radiation 
problem of the forced oscillatory motion, the flow does not become supercritical after 
the critical point. Instead, the flow returns to subcritical but with k ,  = k,. Th' is can 
be understood from ( 2 a )  and figure 1 which show that for a given wave frequency the 
encounter frequency w decreases as U increases. As the forward speed further 
increases, the encounter frequency becomes zero at Fn = 0.7188 and correspondingly 
U = wo/k, .  The wave is stationary in the moving coordinate system at this particular 
point. After that  the wave will be from the right in the moving system. It later 
reaches its other critical point a t  Fn = 0.7771 corresponding to  U = C,, and k ,  = k,. 
Only after that  does the oscillatory flow become supercritical. As the forward speed 
further increases to Fn = 1.0, the steady flow will become supercritical and this leads 
to discontinuity of the exciting forces. 
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